Team Contest

2006/7/12 Wenzhou, China

- *Team:* _____ *Score:* ____
- 1. The teacher said, "I want to fit as large a circle as possible inside a triangle whose side lengths are 2, 2 and 2*x* for some positive real number *x*. What should the value of *x* be?" Alex said, "I think *x* should be 1." Brian said, "I think *x* should be $x = \sqrt{2}$." Colin said, "Both of you are wrong." Who was right?

Team Contest 2006/7/12 Wenzhou, China

Team: _____ *Score:* _____

2. A triangle can be cut into two isosceles triangles. One of the angles of the original triangle is 36°. Determine all possible values of the largest angle of the original triangle.

Team Contest 2006/7/12 Wenzhou, China

Team:

Score: _____

3. There are five Tetris pieces, each consisting of four unit squares joined edge to edge. Use the piece shaped like the letter L (the first one in the diagram below) and each of the other four pieces to form a shape with an axis of reflectional symmetry.

Team Contest

2006/7/12 Wenzhou, China

Team: ______

4. A domino consists of two unit squares joined edge to edge, each with a number on it. Fifteen dominoes, numbered 11, 12, 13, 14, 15, 22, 23, 24, 25, 33, 34, 35, 44, 45 and 55, are assembled into the 5 by 6 rectangle shown in the diagram below. However, the boundary of the individual dominoes have been erased. Reconstruct them.

Score:

1	1	3	5	2	3 2
1	4	3	$\frac{5}{1}$		2
2	4	5	5	3	2 4 4
3	4 3 5	1	1	2	4
2	5	4	5	4	4

 Team Contest
 2006/7/12
 Wenzhou, China

 Team:

 Score:

5. A lucky number is a positive integer which is 19 times the sum of its digits (in base ten). Determine all the lucky numbers.

Team Contest

2006/7/12 Wenzhou, China

Team: _____ *Score:* _____

- 6. Alice and Betty play the following game on an $n \times n$ board. Starting with Alice, they alternately put either 0 or 1 into any of the blank squares. When all the squares have been filled, Betty wins if the sum of all the numbers in each row is even. Otherwise, Alice wins.
 - (a) Which player has a winning strategy when n = 2006?
 - (b) Answer the question in (a) for an arbitrary positive integer n.

Team Contest 2006/7/12 Wenzhou, China

Team: _____ *Score:* _____

7. Prove that $1596^n + 1000^n - 270^n - 320^n$ is divisible by 2006 for all positive odd integer *n*.

Team Contest 2006/7/12 Wenzhou, China

Team: _____ *Score:* _____

8. From the list of positive integers in increasing order, delete all multiples of 4 and all numbers 1 more than a multiple of 4. Let S_n be the sum of the first *n* terms in the sequence which remains. Compute $\left[\sqrt{S_1}\right] + \left[\sqrt{S_2}\right] + \dots + \left[\sqrt{S_{2006}}\right]$.

Team Contest 2006/7/12 Wenzhou, China

9. ABC and PQR are both equilateral triangles of area 1. The centre M of PQR lies on the perimeter of ABC. Determine the minimal area of the intersection of the two triangles.

Team: _____ *Score:* _____

Team Contest 2006/7/12 Wenzhou, China

Team: _____ *Score:* _____

10. For a certain positive integer *m*, there exists a positive integer *n* such that *mn* is the square of an integer and m-n is prime. Determine all such positive integers m in the range $1000 \leq m < 2006$.