2008 Thailand Elementary Mathematics International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand
Score: \qquad

1. $\quad N$ is a five-digit positive integer. $\quad P$ is a six-digit integer constructed by placing a digit ' 1 ' at the right-hand end of $N . \quad Q$ is a six-digit integer constructed by placing a digit ' 1 ' at the left-hand end of N. If $P=3 Q$, find the five-digit number N.
\qquad

2008 Thailand Elementary Mathematics International Contest (TEMIC)

Team Contest

2008/10/28 Chiang Mai, Thailand

Team: \qquad Score: \qquad
2. In a triangle $A B C, X$ is a point on $A C$ such that $A X=15 \mathrm{~cm}, X C=5 \mathrm{~cm}$, $\angle A X B=60^{\circ}$ and $\angle A B C=2 \angle A X B$. Find the length of $B C$, in cm .

2008 Thailand Elementary Mathematics International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand

Score:

\qquad
3. A track $A B$ is of length 950 metres. Todd and Steven run for 90 minutes on this track, starting from A at the same time. Todd's speed is 40 metres per minute while Steven's speed is 150 metres per minute. They meet a number of times, running towards each other from opposite directions. At which meeting are they closest to B ?
\qquad

2008 Thailand Elementary Mathematies International Contest (TEMIC)

Team Contest

 2008/10/28 Chiang Mai, Thailand
Team:

\qquad Score: \qquad
4. The numbers in group A are $\frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}$ and $\frac{1}{42}$. The numbers in group B are $\frac{1}{8}, \frac{1}{24}, \frac{1}{48}$ and $\frac{1}{80}$. The numbers in group C are 2.82, 2.76, 2.18 and 2.24. One number from each group is chosen and their product is computed. What is the sum of all 80 products?
\qquad

2008 Thailand Elementary Mathematics International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand

Score:

\qquad
5. On the following 8×8 board, draw a single path going between squares with common sides so that
(a) it is closed and not self-intersecting;
(b) it passes through every square with a circle, though not necessarily every square;
(c) it turns (left or right) at every square with a black circle, but does not do so on either the square before or the one after;

(d) it does not turn (left or right) at any square with a white circle, but must do so on either the square before or the one after, or both.

ANSWER :

2008 'Thailand Elementary Mathematics International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand
Score: \qquad
6. The diagram below shows a 7×7 checkerboard with black squares at the corners.

How many ways can we place 6 checkers on squares of the same colour, so that no two checkers are in the same row or the same column?

\qquad

2008 Thailand Elementary Mathematics International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand
Score: \qquad
7. How many different positive integers not exceeding 2008 can be chosen at most such that the sum of any two of them is not divisible by their difference?

ANSWER : \qquad

2008 Thailand Elementary Mathematies International Contest (TEMIC)

Team Contest

2008/10/28 Chiang Mai, Thailand

Team: \qquad Score: \qquad
8. A $7 \times 7 \times 7$ cube is cut into any $4 \times 4 \times 4,3 \times 3 \times 3,2 \times 2 \times 2$, or $1 \times 1 \times 1$ cubes. What is the minimum number of cubes which must be cut out?
\qquad

2008 Thailand Elementary Mathematies International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand

Score:

\qquad
9. Place the numbers 0 through 9 in the circles in the diagram below without repetitions, so that for each of the six small triangles which are pointing up (shaded triangles), the sum of the numbers in its vertices is the same.

2008 Thailand Elementary Mathematies International Contest (TEMIC)

Team Contest

Team: \qquad

2008/10/28 Chiang Mai, Thailand

Score:

\qquad
10. A frog is positioned at the origin (which label as 0) of a straight line. He can move in either positive $(+$) or negative(-) direction. Starting from 0 , the frog must get to 2008 in exactly 19 jumps. The lengths of his jump are $1^{2}, 2^{2}, \ldots, 19^{2}$ respectively (i.e. $1^{\text {st }}$ jump $=1^{2}, 2^{\text {nd }}$ jump $=2^{2}, \ldots$, and so on). At which jump is the smallest last negative jump?

\qquad

