2009 Durban Invitational World Youth Mathematics Intercity Competition

青少年數學國際城市邀請賽

個人賽試題

答題指引:

- 請勿翻開此頁,直到聽到答題指令為止。
- 請在下一頁的對應位置填寫隊名、您的姓名及編號。
- 試題包括填充題 12 題, 每題 5 分; 計算證明題 3 題, 每題 20 分。 本卷總分 120 分。
- 填充題只須在空格內填寫**阿拉伯數字**答案,以其他文字書寫一律 不計分,不須計算過程,若題目有不只一個答案,則**全部**答對才 給分。
- 計算證明題必須填寫詳細計算過程或證明,根據答題情況給分。
- 本卷答題時間:120分鐘。
- 不得使用任何電子計算器具。
- 不得使用紅筆作答。
- 答題結束後,將回收本卷所有試題和草稿紙。

Traditional Chinese Version

繁體中文版

2009 Durban Invitational World Youth

個人賽試題

答題時間:120 分鐘		2009/0	7/08 南非 德班
隊	名: 姓名:		得分:
第-	一部份:填充題,請將答案填寫在	.空格內,共十二題,	每題5分。
1.	已知 a,b,c 為三個遞增的連續·	奇數,試求 $a^2-2b^2+c^2$	² 的值。
			答:
2.	將一個正整數 n 放入一個機器內	将會產生出一個正整數	$\frac{n(n+1)}{2}$ 。若我們將 5
	放入機器內,將所產生出的數再於 麼?		
			答:
3.	A、B、C三人採西瓜。 A與B所採西瓜的個數之和以 B與C所採西瓜的個數之和以 C與A所採西瓜的個數之和以 請問他們每人所採西瓜的個數之。	七A多16個; 七B多8個。	
			答:
4.	如圖所示,一個半圓的圓心為 O 。 光線在圓周上的點 C 處反射,反 光再交圓周於點 B ,依同樣方式 度?	射角 ZOCB 等於入射戶	角∠MCO;接著這束
	P M	A	*

5. 年齡分別為 1~19 歲的十九個小孩圍成一個圓圈,將所有相鄰兩個小孩的年 齡的差值記錄下來。請問這十九個差的總和的最大值是多少?

答:

答:

6.	化簡求值 $\frac{(2^4+2^2+1)(4^4+4^2+1)(6^4+6^2+1)(8^4+8^2+1)(10^4+10^2+1)}{(3^4+3^2+1)(5^4+5^2+1)(7^4+7^2+1)(9^4+9^2+1)(11^4+11^2+1)}$ 。
	答:
7.	已知 $A \cdot B \cdot C \cdot D$ 是平面上不共圓的四點。 $\triangle ABD \cdot \triangle ADC \cdot \triangle BCD \cdot \triangle ABC$ 的外心分別為點 $E \cdot F \cdot G \cdot H$,線段 EG 與 FH 交於點 $I \circ Ä$ $AI = 4$, $BI = 3$,則 CI 的長度是多少?
	答:
8.	某次考試,及格分數為65分,全班的總平均為66分,而所有成績及格的學生的平均為71分,所有成績不及格的學生的平均為56分。為了減少不及格的學生人數,老師給每位學生的成績加上5分。加分之後,所有成績及格的學生的平均變為75分,所有成績不及格的學生的平均變為59分。已知該班學生人數介於15至30人之間,請問該班有多少位學生?
	答:
9.	有多少個不同的直角三角形,以2009 ¹² 為一條直角邊,且三條邊都是整數? (全等三角形視為同一個三角形。)
	· · · · · · · · · · · · · · · · · · ·
10.	請找出滿足以下條件之最小的六位數:它的數碼和可被26整除,且將這個六位數加1,所得的數的數碼和也可被26整除。
	答:
11.	在一圓周上有1個紅點和2009個藍點。 <u>小丹</u> 計算所有頂點都是藍點的凸多邊形的個數, <u>小克</u> 計算有一個頂點是紅點的凸多邊形的個數。請問他們兩人所得的數之差是多少?
	答:
12.	小馬在體育場賣飲料,礦泉水每瓶4元,汽水每瓶7元。開始時他共有350 新飲料,雖然沒有全部賣完,但是他的銷售收入恰好是2009元。請問小馬

瓶飲料,雖然沒有全部賣完,但是他的銷售收入恰好是 2009 元。請問<u>小馬</u>至少賣出了多少瓶汽水?

答:_____

第二部份:計算及證明題,必須寫出計算或證明過程。共三題,每題 20 分。

1. 在某次國際象棋比賽中共有 10 位選手參賽,每位選手必須與其他選手恰好 對弈一局。經過數局比賽後,發現任意三位選手之間都至少有兩位選手尚未 對弈。請問截至此時為止,此棋賽最多已賽過多少局?

2. 點 P 為三角形 ABC 內部一點,使得 $\angle PBC=30^{\circ}$, $\angle PBA=8^{\circ}$,且 $\angle PAB=\angle PAC=22^{\circ}$ 。請問 $\angle APC$ 為多少度?

3. 請求出最小的正整數滿足以下條件:該數可以被表示為四個正整數的平方和,且可以整除某個形如2"+15的整數,其中 n 為正整數。